
Soon: A Regular Description Language
for Simulating Finite Automata

 1

Reese Bunker
College of Computing

 Michigan Technological University
 Houghton, MI USA
 rjbunker @mtu.edu

ABSTRACT
Soon is a description language for Finite Automata, as well as a
simulator allowing a list of test inputs. Many simulators for
automata exist, but most opt to use a GUI to describe automata. The
syntax of Soon allows for a quick description of finite automata.
The regularity of Soon's syntax allows for the creation of a self-
accepting description of a finite automata.

CCS CONCEPTS
• Formalisms • Theory of computation • Regular languages
• Formal languages and automata theory

KEYWORDS
Description Language, Finite Automata, Simulator

Reference format:

Reese Bunker. 2023. Soon: A Regular Description Language for Simulating
Finite Automata. Infinite Loop, volume 1. Michigan Technological
University, Houghton, MI, USA

Introduction
Soon is a description language for Finite Automata, as well as a
simulator allowing a list of test inputs. Users input a Soon
description file and a string input file, and Soon will run the input
file through the automata described in the Soon description file,
outputting either 0 or 1. 1 meaning the input file is accepted through
the automata, 0 meaning it is not accepted. Soon was written in C
using GNU's Bison and Flex [3]. Much of the Flex/Bison
boilerplate code came from Introduction to Compilers and
Language Design [2].

Motivation
While many programs exist for simulating finite automata, most
require users to draw automata using a GUI [4, 6]. Although
intuitive to use, it is time-consuming for larger automata. Having a
typed input for automata allows for quicker transfer of handwritten
automata to a simulator. Notably, Dr. David Doty's Automaton
simulator uses a similar syntax [5]. The regularity of the language
is an interesting feature, as traditional parsing techniques such as
top-down and bottom-up may be unnecessary. It is also possible for
Soon descriptions to act as a file format to be generated and
interpreted.

Syntax of Soon
Although a Soon description is a definition of a finite automaton.
The 5 statements in a Soon description define an automaton in a
way that corresponds to the formal definition of an automaton [1,
pg 35]. Listed below is the general structure of a Soon description.

states: <list of states> ;
alphabet: <list of characters> ;
start: <start state> ;
accepting: <list of accepting states> ;
transitions: <list of transitions> ;

The states declaration provides Soon with a list of states in the
automata. This allows the interpreter to allocate space for the
transition table. The list of states should contain only integers
between 0 and 255. For example, if a automata contains 3 states,
the states declaration may read like this:

states: {0, 1, 2};

However, the states do not have to in order, nor do the integers have
to be adjacent. The following states declaration is also valid:

states: {255, 13, 5, 0};

It is possible to imply all numbers in between two numbers
inclusively using a hyphen:

states: {0-12};

The declaration of the alphabet provides Soon with the alphabet for
the given automata. All ASCII characters with values between 33
and 126 inclusively are valid characters. For an automata with an
alphabet containing letters a, b, c and d, the alphabet declaration
could be written as:

alphabet: {'a', 'b', 'c', 'd'};

Alternatively, if the alphabet contains characters that appear
consecutively on an ascii table, the declaration could also be written
as:

alphabet: {'a'-'d'};

Infinite Loop, Volume 1, 2023-2024 R. Bunker

2

For more complex alphabets, both of these methods can be used
interchangeably.

alphabet: {'a'-'d','f','0'-'9',''',';' };

The declaration of the start state informs the interpreter at which
state to begin the simulation at. The start state should be a member
of the states set. For example, if the list of states is {0, 1, 2}, and 0
was to be the start state, the start declaration would be written as:

start: 0;

The definition of accepting states allows Soon to know if a given
string is accepted or rejected when the automaton finishes reading
the input. The list of accepting states should contain only integers
between 0 and 255 that are members of the list of states. For
example, if there is a list of states {0, 1, 2} and state 0 is accepting,
then the definition of the accepting state should be written as:

accepting: {0};

There may be multiple accepting states. For example, if there is a
list of states {0, 1, 2} and states 0 and 2 are accepting, then the
accepting states definition could be written as:

accepting: {0, 2};

Likewise, with the states definition, the order of the elements in the
list of accepting states is unimportant. Presently, unlike the states
definition, the accepting states must be listed one by one.

The final statement required for a Soon description is the transition
statement. Each member of the list should be a 3-tuple with
members (integer, char, integer). Each member of the tuple
corresponds to: the current state, input character, and next state. For
example, the 3-tuple (0, 'a', 1) corresponds to a transition from 0 to
1 on 'a'. Each 3-tuple should be separated by commas. Given a
simple automaton with two states {0, 1} and 1 transition from 1 to
0 on 'b', and a transition from 0 to 1 on 'a'. The transition statement
would look like:

Transitions: {(0, 'a', 1), (1, 'b', 0)};

A transition shared by many inputs may be written using the
following shorthand:

Transitions: {(0, 'a'-'c', 0)};

Example Soon Description
Using the syntax above it is relatively straightforward to generate a
Soon description given an image of an automaton. For example
given the following automaton:

• Sourced from Wikimedia commons[7]
• Automaton accepting binary strings representing value n

such that n ≡ 0 (mod 3)

The Soon description can be written as such:

states: {0, 1, 2};
alphabet: {'0', '1'};
start: 0;
accepting: {0};
transitions: {(0, '0', 0), (0, '1', 1), (1,
'0', 2), (1, '1', 0), (2, '0', 1), (2, '1',
2)};

Creating regular expressions for Soon
To evaluate the regularity of the Soon syntax, the following
definition of a regular language will be used:

Definition	1.16:	A	language	is	called	a	regular	language	if	some	
finite	automaton	recognizes	it	[1,	p.40].	

Essentially, if an automaton can be constructed that recognizes the
underlying language of a Soon description. Then that language is
regular. To simplify the problem, each statement in a Soon
description will be denoted as its own language. The following
notation will be used to represent these languages.

Q	=	the	language	describing	the	set	of	states	on	an	automaton	
α	=	the	language	describing	the	alphabet	over	an	automaton	
S	=	the	language	describing	the	start	state	of	an	automaton	
A	=	the	 language	describing	 the	set	of	accepting	states	 in	an	
automaton	
T	 =	 the	 language	 describing	 the	 transition	 function	 of	 an	
automaton	

Q◦α◦S◦A◦T will represent the language of a Soon description. By
theorem 1.26, if all 5 languages are regular, then the concatenation
of these languages will be regular.

Theorem	1.26:	For	any	regular	languages	A1	and	A2,	A1◦A2	is	
regular	[1,	pg	47].	

As finite automata are equivalent to regular expressions [1, pg 66],
regular expressions can be used to define behavior for automata. To
create these expressions, some special notation must be defined.
Parentheses are reserved characters, thus square brackets will be
used in their place.
For example:

Soon: A Regular Description Language Infinite Loop, Volume 1, 2023-2024

 3

a[a, b]*b will denote the all strings starting with a and ending with
b. The character μ will be used to represent any character with an
ascii value between 33 and 126 inclusively. D will be used to denote
any digit 0-9. A plus sign may be used to represent at least one
concatenation [1, pg 65]. The regular expressions for each are as
follows.

Q	=	states:	{	[D+	∪	D+-D+]	[,D+	∪	,D+-D+]*	};	
α	=	alphabet:	{	[’µ’	∪	’µ’-’µ’]	[,’µ’	∪	,’µ’-’µ’]*	};	
S	=	start:	D+	;	
A	=	accepting:	{	D+	[,	D+]*	};	
T	=	transitions:	{	[(D+	,	[’µ’	∪	’µ’-’µ’]	,	D+)]		[,	(D+	,	[’µ’	∪	’µ’-
’µ’]	,	D+)]*	};	

Creating Automata to Accept Soon Descriptions
With the above regular expressions, it is possible to construct
automata to accept these languages. For example, listed is a finite
automaton accepting language S.

• Image generated using JFLAP 7.1 [4].
• Automaton representing the language S

A more complex automaton is that of the language T. Listed below
is an abbreviated look at the finite automaton for accepting
language T.

• Image generated using JFLAP 7.1 [4].
• Automaton representing part of the language T

Since Q, α, S, A and T, can be represented using finite automata,
they can all be considered regular. Therefore Q◦α◦S◦A◦T is regular
by Theorem 1.26 [1, pg 47]. As Q◦α◦S◦A◦T is regular, an automaton
to accept all syntactically correct Soon descriptions may be created.
Listed below is the full Soon description for an automaton to accept
Q◦α◦S◦A◦T.

states: {0-82};
alphabet: {'!'-'~'};
start: 0;
accepting: {82};
transitions: {
(0, 's', 1), (1, 't', 2), (2, 'a', 3), (3,
't', 4), (4, 'e', 5), (5, 's', 6), (6, ':',
7), (7, '{', 8), (8, '0'-'9', 9), (9, '0'-
'9', 9),

(9, ',', 8), (9, '-', 10), (9, '}', 12),
(10, '0'-'9' , 11), (11, '0'-'9', 11), (11,
',', 8), (11, '}', 12), (12, ';', 13),

(13,'a', 14), (14, 'l', 15), (15, 'p', 16),
(16, 'h', 17), (17, 'a', 18), (18, 'b',
19), (19, 'e', 20), (20, 't', 21),
(21, ':', 22), (22, '{', 23), (23, ''',
24), (24, '!'-'~', 25), (25, ''', 26), (26,
',', 23), (26, '-', 27), (27, ''', 28),
(28, '!'-'~', 29), (29, ''', 30), (30, '}',
31), (30, ',', 23), (26, '}', 31), (31,
';', 32),

(32, 's', 33), (33, 't', 34), (34, 'a',
35), (35, 'r', 36), (36, 't', 37), (37,
':', 38), (38, '0'-'9', 39), (39, '0'-'9',
39),
(39, ';', 40),

(40, 'a', 41), (41, 'c', 42), (42, 'c',
43), (43, 'e', 44), (44, 'p', 45), (45,
't', 46), (46, 'i', 47), (47, 'n', 48),
(48, 'g', 49), (49, ':', 50), (50, '{',
51), (51, '0'-'9', 52), (52, ',', 51), (52,
'0'-'9', 52), (52, '}', 53), (53, ';', 54),

(54, 't', 55), (55, 'r', 56), (56, 'a',
57), (57, 'n', 58), (58, 's', 59), (59,
'i', 60), (60, 't', 61), (61, 'i', 62),
(62, 'o', 63), (63, 'n', 64), (64, 's',
65), (65, ':', 66), (66, '{', 67), (67,
'(', 68), (68, '0'-'9', 69), (69, '0'-'9',
69), (69, ',', 70), (70, ''', 71), (71,
'!'-'~', 72), (72, ''', 73), (73, ',', 74),
(73, '-', 75), (75, ''', 76), (76, '!'-'~',
77),
(77, ''', 78), (78, ',', 74), (74, '0'-'9',
79), (79, '0'-'9', 79), (79, ')', 80), (80,
',', 67), (80, '}', 81), (81, ';', 82)
};

Conclusion
Although the language Soon is regular, many strings in its language
may not be semantically valid. For example, to create a description
with transitions to states that are not in the states set.
Nondeterministic finite automata may also be described using
Soon. However, the Soon interpreter does not have functionality to
handle nondeterminism. While the syntax and structure of Soon are
simple, larger definitions of automata can become difficult to read
and use. Soon may be better suited as an intermediate
representation, to be generated by regular expressions, or by
concatenation of existing automata. Future work for this project
may include support for nondeterminism and conversion to
deterministic automata.

REFERENCES
[1] M. Sipser, Introduction to the Theory of Computation. Boston, MA: Cengage

Learning, 2013.
[2] D. Thain, Introduction to Compilers and Language Design. Douglas Thain, 2023.

Infinite Loop, Volume 1, 2023-2024 R. Bunker

4

[3] “GNU Bison - the yacc-compatible parser generator - GNU Project - Free
Software Foundation,” gnu.org, https://www.gnu.org/software/bison/manual/
(accessed Oct. 30, 2023).

[4] “JFLAP Version 7.1,” JFLAP, https://www.jflap.org/ (accessed Oct. 30, 2023).
[5] D. Doty, Automaton Simulator, https://web.cs.ucdavis.edu/~doty/automata/

(accessed Nov. 1, 2023).
[6] G. Silber, FSM Simulator, https://www.eecis.udel.edu/~silber/automata/

(accessed Nov. 1, 2023).
[7] User:Mikm, DFA Example Multiplies of 3. Svg. Wikimedia, 2007.

