Using Reinforcement Learning to Train In-game
Non-Player Characters (NPCs)

Ransom Duncan
Computer Science Department
Michigan Technological University

Abstract—The video game industry is continuously evolving,
driven by technological advancements, offering opportunities for
more immersive gaming experiences. This research explores the
integration of machine learning in game design, focusing on
applications for in-game artificial intelligence (AI). Traditional
game Al design relies on predefined algorithms and scripted
behaviors. This often results in predictable AI and static game
play. Here I investigate how machine learning can create Al
systems that dynamically adapt to a player’s skill level to
enhance engagement and challenge. I first present a literature
review to learn about current uses of machine learning in video
games. Then I describe a prototype game using the Unity ML
framework. I use the creation and success of this prototype to test
the feasibility of incorporating Al into video game development.

I. INTRODUCTION

As the gaming industry continues its pursuit of providing
players with increasingly immersive experiences, the inte-
gration of cutting-edge technologies becomes not only an
opportunity but a necessity. This research project delves into
the realm of Machine Learning (ML) and its potential to
redefine video game development, with a specific focus on
in-game NPCs (non-player characters). In an era where player
expectations are more sophisticated than ever, the conventional
use of pre-defined algorithms and scripted behaviors for in-
game entities has left a discernible void in the dynamic and
adaptive nature of gaming experiences.

Machine learning is a branch of artificial intelligence that
endows systems with the ability to learn and adapt au-
tonomously [5]. ML holds the potential to revolutionize how
NPCs respond to player actions. No longer bound by static
algorithms, NPCs could evolve dynamically, providing players
with experiences that are not only challenging but uniquely
tailored to their skill levels.

The application of machine learning in video game devel-
opment has the potential to overcome limitations imposed
by traditional methodologies. By focusing on adaptability,
responsiveness, and a nuanced understanding of player behav-
iors, machine learning could usher in a new era of gaming
that captivates and challenges gamers. This paper describes
for a proof-of-concept system for the integration of machine
learning in video game development.

To achieve the objectives of this research, a multi-faceted
methodology is employed. The initial phase involves a review
of existing literature and research on machine learning in
game design to elucidate best practices and identify challenges

in implementing machine learning in the gaming context.
Following this, a practical design approach is taken. This
process involves the creation of a simple game prototype.
To create this prototype the game development engine Unity
will be used. The machine learning framework Unity ML will
be used to train in-game entities. These entities will then be
implemented into the game prototype. This will allow for the
observation and analysis of their adaptive behaviors based on
player performance.

II. TRADITIONAL NPCS VS AI NPCS

NPC design in video games relies on algorithms and
scripted behaviors for in-game decisions and actions. However,
these systems often result in predictable and static gameplay
experiences, limiting the potential for player engagement. The
crux of the issue lies in the need for in-game NPCs that can
dynamically adapt to a player’s skill level, providing a more
personalized and challenging gaming experience. The goal
is to observe the impact of machine learning algorithms on
Al behavior, specifically in terms of how it can adapt to the
player’s skill level.

A. Traditional NPCs

Traditional NPCs have always been a keystone element for
many games. These NPCs can be incredibly complex to the
point of seeming like AI. Behind the scenes, however, they
are all operating on predetermined algorithms and scripted
behavior patterns created by the developers. These NPCs,
while serving essential roles within games, often lack the
adaptability and responsiveness necessary to create truly chal-
lenging gameplay. Their actions follow set patterns, leading
to scripted interactions that players can learn and predict.
This creates artificial limits on in-game difficulty. Experienced
players will find these NPCs boring, with predictable patterns
that are easy to beat. New players conversely will find the
NPC’s actions nonsensical and confusing. Causing frustration
which may lead them to stop playing the game prematurely.

On the other hand, the emergence of Al has opened-up the
possibility of creating Al-driven NPCs, leveraging advanced
machine learning techniques. AI NPCs have the potential to
be a new shift in gaming Al. This would offer a departure from
the static and predictable behaviors of traditional NPCs. These
Al-driven entities possess the capacity to learn and evolve
based on interactions with players and the game environment.

|Enem3r_Dism-:9 =No_enem,t]

/L__/‘ S

\!
Head _on_Aftack
-—"_F.f/ ‘--_\-\-_'—-

/ N\ F
‘ ~
|Seek_Weapens| | Armour = Low|
YN NG
|59ek_Almuur| |E1q:nlur9| N

__F
T
f,—-’} \'--.,‘_
.-'/ \\“\
T~~~ ~~_F

[Seek Weapors| |5e\ek‘Heath

Vd
Ammo = Medium

N N

|vxeapu;cmse| [eek Heath| [Amour = Medum| [Seek_Heath]

YN

N

[Seck_Heah] [Sack_Ammo]

[Seck_Hoath| | Sack_mour]

Fig. 1. Example of a traditional NPC decision tree [1].

B. AI NPCs

The hallmark of AI NPCs, particularly those utilizing re-
inforcement learning, lies in their adaptability and dynamic
nature. Unlike traditional NPCs bound by predefined behav-
iors, AI NPCs can adapt their strategies and responses based
on the player’s actions. This adaptability introduces an element
of unpredictability, making gaming experiences more engaging
and challenging. The transition from traditional NPCs to their
Al-driven counterparts signifies a shift from static to adaptive
gameplay experiences. AI NPCs, empowered by reinforcement
learning, continuously learn and evolve, mirroring the com-
plexity and unpredictability of human behavior. This evolution
allows for a more personalized and tailored experience for
players, where challenges dynamically adjust to their skill
levels and playstyles.

The integration of Al-driven NPCs in games heralds a new
era where gaming experiences are not only immersive but also
responsive and adaptive to individual players. By breaking
away from rigidly scripted behaviors, AI NPCs enhance player
engagement by offering unique and evolving interactions,
contributing to the evolution of gaming landscapes.

III. REINFORCEMENT LEARNING

Machine Learning is “A machine that “learns” data and
develops expertise on categorizing or garnering that knowledge
over time” [3]. There are three main types of machine learning

used to create Al systems. There is supervised learning,
where the Al learns from a set of manually labeled data.
Unsupervised learning, where the Al learns from a larger
unlabeled data. And reinforcement learning, where the Al
learns through a system of trial and error [5], [6]. We focus
on the application of reinforcement learning as it is the most
compatible with the game development.

The core of reinforcement learning is training an agent to
make decisions by having that agent interact with an envi-
ronment. The agent receives feedback in the form of rewards
or punishments, allowing it to learn the optimal behavior over
time [1]. The goal of reinforcement learning is to find a policy,
strategy, or rule that maximizes the cumulative reward the
agent receives. The reinforcement learning process typically
involves the following steps: the agent makes an observation,
the agent selects an action based on its observation, the agent
takes its chosen action and then receives either a reward or
a punishment, and the agent updates its observation policy
based on its reward or punishment. This process is repeated
iteratively, allowing the agent to learn how to maximize the
reward it receives and create the desired behavior. This cycle
is shown in Figure 2.

In the context of in-game AI, reinforcement learning em-
powers NPCs to learn from their experiences within the game
world. These NPCs, acting as agents, make decisions and
take actions based on their observations of the environment.

Agent

JE

(Change of) State

Policy - o

A S s
, Policy update N

Learning algorithm

A

Action

I
|
|
I
: Reward /
|

<> Scribbr

Fig. 2. General framework of reinforcement learning [4].

When an NPC'’s actions contribute positively to its objectives,
it receives rewards. Conversely, detrimental actions result
in penalties. Over successive iterations, NPCs adjust their
decision-making processes to maximize rewards, evolving
their behavior to align with desired gameplay dynamics. The
cyclic nature of reinforcement learning involves the NPC
observing the game environment, selecting actions, receiving
feedback in the form of rewards or penalties, and subsequently
updating its strategies. This iterative learning loop enables
NPCs to dynamically adapt to player behaviors, leading to
enhanced unpredictability and tailored challenges within the
game.

Because video games are inherently an interactive envi-
ronment, reinforcement learning is a tailor-made tool for
creating adaptive and responsive Al-driven NPCs. It allows
NPCs to evolve beyond static behaviors, providing players
with dynamic and engaging experiences that evolve and adapt
alongside their actions. When compared to traditional methods
of NPC creation, reinforcement learning does not take more
work to create, as long as a preexisting framework is being
used.

IV. UNITY ML

Unity Machine Learning (ML) is a groundbreaking frame-
work within the realm of game development. It serves as

a leading example for the integration of advanced machine
learning capabilities into games. This platform equips game
developers with the tools necessary to implement and train
Al agents, including NPCs. The utilization of Unity ML
revolves around its generation of trainable agents. These agents
allow developers to harness a variety of machine learning
algorithms, notably reinforcement learning, to create NPCs
with learning capabilities [8]. These NPCs can then be placed
seamlessly into the finished game environment with all of
their trained behaviors intact. By integrating Unity ML, game
developers can introduce Al-driven entities into their game
prototypes, fostering adaptive behaviors that respond dynam-
ically to player interactions. A basic implementation of this
framework is shown in Figure 3.

The framework provided by Unity ML streamlines the inte-
gration of machine learning into game development, offering
a user-friendly interface and specialized libraries tailored to
the needs of game developers [7]. This accessibility enables
the creation of Al-driven NPCs that evolve, learn, and dy-
namically adjust their behaviors based on player engagement.
Through Unity ML, the synergy between game development
and cutting-edge Al integration becomes more attainable.
Empowering developers to create gaming environments where
NPCs evolve and adapt. This leads to richer, more engaging
player experiences. The framework encapsulates a potential

Fig. 3. Basic example of Al-trained NPCs playing soccer [7].

evolution of the gaming landscape. Where Al-driven NPCs
adapt to player actions, enhancing the overall dynamism and
depth of gameplay encounters.

V. DEVELOPMENT

In order to gain a better understanding of the technology, I
decided to develop a simple version of the classic game pong
and train an Al system to play it. To keep things simple, I
followed the example provided in the Pellet Grabber tutorial
series by the YouTube channel Jason Builds [2], creating an
environment with few moving parts that would allow the Al
agent to train with as few variables as possible.

Initially, I rewarded the agent for successfully deflecting
the ball. However, this approach produced an agent that was
nearly unbeatable for a human player. To address this issue, I
developed a new system that incentivized the agent to keep
the score as close to tied as possible. My first attempt at
this system punished the agent for being behind in the score
and gave a decreasing reward for being ahead. However, this
approach led to the agent prioritizing a tied score over hitting
the ball. By reducing how frequently the agent received this
secondary reward, I was able to create a reward system that
worked more effectively.

The actual training process was the next step. When I first
started the Al was behaving erratically and was not noticeably
increasing in skill. After extensive research, I determined that

this was due to 2 factors. The first factor was simply the
amount of training I was doing. I was not training the agents
for long enough to produce meaningful results. The second
issue was slightly more obscure. When training, the MLagents
library default is to run the training at a 20:1 timescale.
However, running at this timescale can result in errors in
Unity’s physics calculations. So to fix this issue I ran the
training at a 1:1 timescale, and to make up for the increased
training time I duplicated my environment and ran the training
with many agents simultaneously.

The final stage of development was testing. Once I had a
working prototype I asked peers of mine to playtest the game
and answer questions about their experience. The results were
generally in line with what I expected. The simple system I had
created struggled to pose a real challenge to a human opponent
However, the potential for a more developed version of the
Al could feasibly accomplish the original goal of providing a
challenge to players without simply overpowering them.

VI. CONCLUSION

This technology is not so powerful that it should be used
universally across the industry. Its potential for success is
limited by the genre of the game that is in development. A
narrative-led game, whose goal is to tell a story, may still
benefit from more traditional NPCs. For this type of game, the
developers can tailor the NPCs’ actions and behaviors to fit the

story and setting they are looking to create. Implementing less
predictable AT NPCs may be detrimental to the immersion of
the player, as well as taking up development time that could
be used elsewhere.

For more competitive, rules-based games, the potential for
this technology is immense. Sports, shooter, and fighting
games are all examples of genres that could benefit greatly
from the use of AI NPCs. These NPCs could be implemented
as a training tool for players looking to practice. Or they
could be used to provide a greatly enhanced single-player
experience. These are things that fans of these game genres
have been asking developers to create for years. Implementing
Al into the development of these games could help to push
these games into a new era.

Al has the potential to reinvent how game developers
create NPCs. Reinforcement learning techniques can be used
to train in-game agents that can learn from and react to
player actions. This creates an immersive and challenging
experience that traditional NPCs cannot replicate. Open-source
frameworks like Unity ML can expedite the implementation of
this technology while providing robust and easy-to-use tools
for developers.

(1]

(2]

(3]

[4]

[5]

(6]

(71

(8]

REFERENCES

BAJAJ, P. Reinforcement Learning, 18 Apr, 2023. Geeks for
Geeks., Last accessed March, 2024., https://www.geeksforgeeks.org/
what-is-reinforcement-learning/.

JASON BUILDS. How To Use MACHINE LEARNING In Unity
MLAgents Setup & Basic Environment - Pellet Grabber Tutorial #1.
https://www.youtube.com/watch?v=D0jTowIMROc, October 2023. Jason
Builds, Last accessed March, 2024.

LINJA, A. Explicit Rule Learning: A Cognitive Tutorial Method to Train
Users of Artificial Intelligence/Machine Learning Systems. PhD thesis,
Michigan Technological University, 2023.

NIKOLOPOULOU, K. Easy Introduction to Reinforcement Learning,
August 15, 2023. Scribbr., Last accessed March, 2024., https://www.
scribbr.com/ai-tools/reinforcement-learning/.

POTENTIA ANALYTICS, I. What Is Machine Learning: Definition,
Types, Applications And Examples. https://www.potentiaco.com/what-is-
machine-learning-definition-types-applications-and-examples/. Potentia
Analytics, Inc., Last accessed March, 2024.

TORRADO, R. R., BONTRAGER, P., TOGELIUS, J., L1U, J., AND PEREZ-
LIEBANA, D. Deep Reinforcement Learning for General Video Game
Al In 2018 IEEE Conference on Computational Intelligence and Games
(CIG) (2018), IEEE, pp. 1-8.

UNITY TECHNOLOGIES. Unity Machine Learning Agents Train and
embed intelligent agents by leveraging state-of-the-art deep learning
technology. https://unity.com/products/machine-learning-agents, 2024.
Unity Technologies, Last accessed March, 2024.

ZHANG, J. An introduction to machine learning with Unity ML-Agents,
August 27, 2021. Coder One., Last accessed March, 2024., https://www.
gocoder.one/blog/introduction-to-unity-ml-agents/.

